Mark Scheme - Biodiversity

$\begin{aligned} & 2 \\ & 1 \end{aligned}$		i	genetic (biodiversity) \checkmark	1	Examiner's Comments Many candidates correctly named this type of biodiversity as genetic. Incorrect answers included 'variation' or suggested 'environmental', 'habitat' or 'species'.
			allows for adaptation to changing environment \checkmark provides variation for natural selection \checkmark can offer, camouflage / protection from predators \checkmark	1 max	ACCEPT in the context of an example e.g. species survival when, a / new, disease introduced Examiner's Comments Many suggested that the colour variation was an adaptation to the environment but did not indicate the crucial idea of a changing environment. Camouflage was a popular correct answer.
			Total	2	
$\begin{aligned} & 2 \\ & 2 \end{aligned}$	a	i	have significant effect on ecosystem \checkmark many other species rely on activity of beavers $\sqrt{ }$	2	

		created dams flooded areas upstream / reduced flow rate downstream creating still / slow moving water for aquatic species \checkmark		

				79 but method correct) or for 29(\%) (as 78 was used instead of 79 but method correct) Examiner's Comments Many candidates correctly calculated a percentage difference using the graph to obtain starting and end figures. Candidates are expected to read data from a graph correctly to the nearest half grid-square. They should not give approximate or rounded figures. Some candidates were not sure how to calculate a percentage change. The most common error was to divide the final figure by the starting figure and multiply by 100, instead of finding the difference between the starting and final figures and dividing that by the starting figure before multiplying by 100 . A few candidates did not follow the rubric instructing them to give their final percentage difference figure to the nearest whole number.
	i	1. number in farmland stays higher than in woodland \checkmark 2. number of butterflies in woodland, has a greater decrease / drops faster / falls more steeply, (than those on farmland) or number of butterflies on farmland, has a smaller decrease / drops slower / falls less steeply, (than those in woodland) \checkmark 3. from 2004 to 2012 they both fall by, similar / same, rate or by 6 (per km²) \checkmark 4. woodland population (decreases), from 98 to 48 (per km²) / by $50($ per km²) / by 51% farmland population, and from 110 to 79 (per km²)/ by 31 (per km ${ }^{2}$) / by $28 \%\left(\right.$ per km^{2}) in 1992 or and difference of 31 (per km²) in 2012 difference of 12 or 23% more decrease in woodland /	2 max	Must be comparative statements 2 must be stated and not implied from figs 4 ecf for $27 \% / 29 \%$ (if that is candidate's answer to (a)(i)) Examiner's Comments This question required the skill of description in translating data from the graph into words, but also the

	woodland decreased by 19 (per km²) more than farmland \checkmark		skill of drawing paired comparisons. Many candidates did not understand this principle and commented or quoted data about either farmland or woodland but not both. Few recognized that the farmland population is always higher than that in the woodland, even though this was very clearly seen on the graph. Stronger answers included comparative adjectives such as higher (number in farmland), greater (decrease in woodland) and smaller (decrease on farmland). Mistakes in quoting the data (i.e. reading figures from the graph or manipulating them to find a difference or the percentage decrease in woodland) were fairly frequent. As previously stated, candidates should not give approximate or rounded figures.

			contradiction to the information supplied in the question that woodlands were becoming more overgrown, deforestation was occasionally mentioned as a cause of the butterfly decline in woodland.
	lacks validity because 1. weather conditions only apply to $2012 \checkmark$ 2. numbers were falling before $2012 \checkmark$ 3. weather conditions and butterfly decline may not be linked / other factors may be responsible \checkmark 4. not enough / no / need more, data / evidence (to know that it is the cause of decline) \checkmark 5. weather conditions in North of England not representative of the whole country \checkmark	2 max	IGNORE statements relating to being valid 1 ACCEPT we only know that it was cold and wet in 2012 4 ACCEPT we need more information about weather 5 ACCEPT we only know about the weather in Northern England Examiner's Comments Most candidates made only one comment although there were two marks available. A large number of candidates were afraid to commit and maintained that the statement was partly valid. Acceptable reasons given for the statement not being valid were that there was insufficient data provided and that other factors may also have an effect on butterfly populations. Few candidates used the information that introduced the graph and referred to wet and cold weather conditions being limited to only part of the time period shown in the graph.
	(same) time of year / time of day / time between sampling or (same) size of sample area / length of transect / number of transects or (same) capture / counting / sampling, technique or (exactly the same) place in each habitat $\sqrt{ }$	1 max	Mark the first variable. IGNORE 'time' unqualified Examiner's Comments Most candidates named a suitable variable that should have been controlled and showed an awareness of ecological sampling methods and constraints. A few candidates delivered a 'standard'

$\left.\begin{array}{|l|l|l|l|l|}\hline & & & & \begin{array}{l}\text { answer that related more to } \\ \text { laboratory-based experiments, such } \\ \text { as pH or temperature, or } \\ \text { misinterpreted the term 'survey' in }\end{array} \\ \text { this context and referred to asking } \\ \text { questions of the same people in the } \\ \text { survey. }\end{array}\right]$

		any four from: statement true as only heather is present at, $4-6 \mathrm{~m} /$ $8 \mathrm{~m} \checkmark$ statement true as only bracken is present at $9 \mathrm{~m} \checkmark$ statement false as bracken and heather both present at $0-4 \mathrm{~m} / 7 \mathrm{~m} \checkmark$ comparative \% (cover) figures for heather and bracken at one point with units \checkmark only one of the two species present at 5 out of 9 points \checkmark	4 max (AO3.3 AO3.4)	
		Total	13	
$\begin{aligned} & 2 \\ & 5 \end{aligned}$	i	(1) (1) (1)	3	
		A has greater richness (1) ORA B has greater evenness (1) ORA	2	
		stratified AND random (within each area) (1) idea that the number of samples within each area should be proportional to their size (1) correct suggestion for the number of samples taken within each area (1)	3	ALLOW description of stratified e.g. 8 in conifer area, 24 in marshy area, 32 in grazed area
		Total	8	
$\begin{aligned} & 2 \\ & 6 \end{aligned}$	a i	$t=13.61$ (1)(1)	2	ALLOW correct working for 1 mark. $\begin{aligned} & \frac{[31.3-20.0]}{\frac{4.1^{2}}{50}+\frac{4.2^{2}}{50}=\frac{16.81}{50}+\frac{17.64}{50}=0.336} \\ & =11.3 / \sqrt{ } 0.689 \\ & =11.3 / 0.830=13.61 \end{aligned}$
		probability is highly significant, calculated t value is greater than the critical value at 0.001 / there is a chance (probability) of below 0.001 that the differences in the shell height seen can be due to chance and the null hypothesis can be rejected (1)	1	
	b	histogram correctly plotted for the values (1) two sets of data distinguished by a key or other suitable method to identify them (1)	4	DO NOT ALLOW a bar chart or a line graph as neither would represent the data correctly. ALLOW a correlation scattergram.

	x axis labelled 'height (mm)' and y axis labelled 'number of dog whelks / Nucella lapillus / shells / class' (1) makes good use of the graph paper and both axes are correctly scaled with ascending equidistant intervals (1)		ALLOW '\% of the sample' for the y axis if this has been calculated.
c	three from positive correlation between the height of the whelk shell and the type of the shore (1) correct calculation of the correlation coefficient (1) (histogram / data, indicates that) shore exposure has an impact on height (1) Nucella show adaptation to harsher wave action (1) shells measured may not all be exposed to wave action (1)	3	ALLOW correlation is strong or a reference to relationship such as:taller shell height and sheltered shore or shorter shell height and exposed shore. ALLOW little overlap on the histogram bars. ALLOW the idea that the differences may be due to direct wave action or adaptation.
d	no detail for the random sampling technique was given / Nucella from the whole population may not have been sampled (1) and use (two) metre tapes to set out a grid and use randomly generated coordinates (1) no measuring instrument specified (1) and use vernier callipers with a precision of more than 0.5 mm (1) incorrect identification of Nucella / several types of shelled molluscs that are similar to Nucella (1) and use a sea shore key to correctly identify the whelk (1) classification of the shore as sheltered or exposed was subjective (1) and use an approved shore classification (such as Ballantine's) (1)	2	Limitation and improvement must be linked for 2 marks.
e	one from increase the number of, Nucella used in the data collection / samples (1) replicate / repeat, the entire experiment again (1)	1	ALLOW a value given such as increasing number to 100 from each shore. ALLOW an understanding of the

				idea that the procedure has only been carried out once for each shore.
		not valid a small percentage of Nucella sampled and some areas not sampled at all which would lead to skewed data (1) human interpretation of the measurement causes accuracy of the data to be questioned (1) genetic variations or sub species not taken into account (1) valid random sampling techniques mean no bias in collection (1) 100 Nucella sampled in total (50 in each area) so large sample size (1) precise instructions for consistent measurement of shell height (1)	3	ALLOW reverse arguments made. idea that conclusion will be distorted
		Total	16	
2	i	estimate will be inaccurate (because of low numbers) 1 dangerous (for collector or jaguar) \rceil	2	IGNORE refs to conspicuousness of tags ALLOW catching one more jaguar will make a big difference to the calculated number ALLOW the technique only works well with large populations IGNORE difficult to catch ALLOW the jaguars might die IGNORE inhumane / cruel / stressful Examiner's Comments Just under half of candidates gained one mark for (a)(i) for alluding to the dangerous nature of capturing jaguars but very few gained a second mark. Many candidates did not notice the reference to the capture-recapture technique and answered in terms of the inappropriateness of camera traps, which did not gain credit.

			this question, almost all did and the vast majority of these were correct.
	human sightings idea of any one of the following misidentification seeing the same individual twice exaggeration / lying poor recollection jaguars likely to be in, places / times, humans are not method unlikely to spot cubs (as still in den)) i i footprints idea of any one of the following misidentification might disappear (before recording) multiple prints in same spot makes counting difficult same print might be counted on different occasions many prints made by the same individual hard to distinguish individual jaguars footprints not always left)		
2			

The higher mark should be awarded where the level descriptor has been evidenced and all aspects of the communication statement (in italics) have been met.

The lower mark should be awarded where the level descriptor has been evidenced but aspects of the communication statement (in italics) are missing.

In summary:

- The science content determines the level.
- The communication statement determines the mark within a level.

Level 3 (5-6 marks)
Full and detailed evaluation of the students' conclusion taking into account the validity of the method used and the implications of the data collected. Learner demonstrates a holistic judgement of the information including evidence for and against the claim. The candidate makes a judgement that there is not enough evidence to support the students' conclusion.

There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.

Level 2 (3-4 marks)

An evaluation of the students' conclusion taking into account the validity of the method used and / or the implications of the data collected. Learner demonstrates a holistic judgement of the information including evidence for and against the claim. The candidate makes a judgement in line with the argument they have presented.

There is a line of reasoning presented with some structure. The information presented is in the mostpart relevant and supported by some evidence.

Level 1 (1-2 marks)
An evaluation of the claim is attempted including discussion of either the validity of the method or the

		implications of the data. The answer includes evidence for or against the claim. A definitive judgement may not be present. A basic structure and some relevant information is provided, although a clear line of reasoning may not be present. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit.		- do not know length of time Area 2 has been fenced off. - limitations of method samples taken on only two days samples only taken in one season no method to prevent recounting observation at a distance might have led to misidentification.
		Total	15	
3		(species evenness is) low / uneven / not even / poor / not high AND many / large, number OR abundance OR population of, leather jackets / meadow ants / two species / some species, but, not many / only a few / small number of / hardly any / small population of, click beetles / wireworms / two species / other species \checkmark	1	ALLOW comparatives e.g. a lot more ants than wireworms, ants much more common than click beetles ALLOW dominated by (mostly) leatherjackets and ants / 2 species IGNORE comparative pairs of figures that lack a qualification like 'only' to show which figure is small(er) IGNORE percentage figures unqualified by description Examiner's Comments Most candidates stated that the sample showed species unevenness and compared the figures to explain why. An answer that only restated figures from the question such as: 'There were 24 leatherjackets and 2

			click beetles' did not score. Some evidence of candidate evaluation was required, like: 'There were a large number of leatherjackets but only 2 click beetles'.
	Total	1	
	FIRST CHECK ON ANSWER LINE If answer $=\mathbf{0 . 6 4 8}$ or 0.649 award 3 marks $\checkmark \checkmark \checkmark$ If answer is incorrect ALLOW 2 marks max for... (some) correct values for n / N and $(n / N)^{2} \checkmark$ $\Sigma(\mathrm{n} / \mathrm{N})^{2}=0.350$ or $0.351 \checkmark \checkmark$ 1 - calculated $\Sigma(\mathrm{n} / \mathrm{N})^{2}$ to 3 s.f. \checkmark $0.65 \checkmark \checkmark$	$\begin{gathered} 3 \text { (AO } \\ 2.4) \end{gathered}$	IGNORE s.f. in working ALLOW 3 correct in each column Examiner's Comments The majority of candidates achieved all three marks. Some marks were not awarded because of incorrect rounding or inappropriate use of significant figures. Some candidates missed out on working marks by not clearly showing their working in the space provided.
	1a species (bio)diversity / variety of species / species evenness shown by calculated Simpson's Index or 1b species (bio)diversity / number of species / species richness \checkmark shown by 5 (plant species) \checkmark variety / diversity / range, of habitats \checkmark shown by, coppiced and mature / reference to two woodland, habitats / AW \checkmark idea that genetic diversity not measured by or evident from students' fieldwork \checkmark	$\begin{gathered} 3 \text { max } \\ (\mathrm{AO} \\ 1.1) \\ (\mathrm{AO} \\ 2.1) \end{gathered}$	1\&2 AWARD the pair of marking points that gives the candidate more marks 1a ALLOW range of species 2a Must be linked to 1a 1a ALLOW range of species 2b Must be linked to 1b

\(\left.$$
\begin{array}{|l|l|l|}\hline\end{array}
$$ \left\lvert\, \begin{array}{l}3 IGNORE 'different habitats' must

be in the context of habitat diversity

4 Must be linked to 3

Examiner's Comments\end{array}\right.\right\}\)| Most candidates discussed species |
| :--- |
| richness and species evenness and |
| were able to access one mark. |
| However, many candidates did not |
| link these terms to the students' |
| fieldwork as the question instructed |
| them to do and so they missed out |
| on a second mark. Others attempted |
| to link species richness and |
| evenness to the fieldwork but an |
| obvious misunderstanding about the |
| meanings of these terms often made |
| this impossible - it was clear from |
| many candidates' answers that they |
| understood species richness to |
| mean the number of individuals in a |
| species. Only a few candidates |
| referred to habitat diversity, although |
| when they did they often gained two |
| marks for referring to the example of |
| coppiced and mature. Many |
| candidates referred to genetic |
| diversity but almost none of these |
| pointed out that this was not |
| addressed by the students. |
| Some candidates discussed vertical |
| levels within woodland. None of |
| these approaches achieved any |
| credit. |

					referred to classification, from kingdoms to species and individuals. OCR support OCR ‘Delivery Guide’ on Biodiversity: https:/www.ocr.org.uk/qualifications/ as-a-level-gce-biology-a-h020-h420-from-2015/delivery-guide/module-ba04-module-4-biodiversity-evolution-and-disease/delivery-guide-badg011-biodiversity-421
			Total	0	
	$\begin{array}{l\|l} 3 & a \\ 4 & a \end{array}$		(Habitat $B=) 0.61 \checkmark$ Habitat with the greatest biodiversity $=A \checkmark$	2	DO NOT ALLOW mp 2 if value of D not calculated ALLOW ECF if B has been identified as the habitat with greatest biodiversity, (if value of D calculated for habitat B greater than 0.71) Examiner's Comments Most candidates gained both marks here. Candidates who showed clear working and an understanding of the method to calculate Simpson's index scored well, but without clear workings, answers were often wrong. Some candidates forgot to take their calculated number from 1. Most candidates who had correctly calculated the biodiversity for habitat B understood the significance of the result and stated that habitat A had a greater biodiversity.
	b	b	climax community \checkmark	1	Examiner's Comments Many candidates gained credit by making reference to the climax community. Unsuccessful responses often indicated that the candidate

$\left.\left.\begin{array}{|l|l|l|l|}\hline & & & \\ \hline\end{array} \begin{array}{l}\text { had not understood the question and } \\ \text { their response related to the } \\ \text { beginning of the process of primary } \\ \text { succession. Common errors } \\ \text { included pioneer species and climax } \\ \text { population. }\end{array}\right] \begin{array}{l}\text { e.g. 'lay tape from edge of lake and } \\ \text { sample along it' }\end{array}\right\}$

				use of pooters, sweep nets or pitfall traps.
	i	$\text { Woodland }=(k) \mathrm{g} \mathrm{~m}^{-2} \mathrm{yr}^{-1} /(\mathrm{k}) \mathrm{J} \mathrm{~m}^{-2} \mathrm{yr}^{-1}$ AND $\text { Lake }=(k) \mathrm{g} \mathrm{~m}^{-3} \mathrm{yr}^{-1} /(\mathrm{k}) \mathrm{J} \mathrm{~m}^{-3} \mathrm{yr}^{-1} \checkmark$	1	$\begin{aligned} & \text { ALLOW }(k) \mathrm{g} \mathrm{~h}^{-1} \mathrm{yr}^{-1} /(\mathrm{k}) \mathrm{J} \mathrm{~h}^{-1} \mathrm{yr}-1 \\ & / \text { tonnes } \mathrm{h}^{-1} \mathrm{yr}^{-1} /(\mathrm{k}) \mathrm{g}(\mathrm{k}) \mathrm{m}^{-2} \mathrm{yr}^{-1} / \\ & \text { (k)J }(\mathrm{k}) \mathrm{m}^{-2} \mathrm{yr}^{-1} \end{aligned}$ $\begin{aligned} & \text { ALLOW }(k) g(d) m^{-3} \mathrm{yr}^{-1} /(k) J(d) m^{-3} \\ & \operatorname{yr}^{-1} /(k) g(k) m^{-3} \mathrm{yr}^{-1} /(k) \mathrm{Jm}^{-3} \mathrm{yr}^{-1} \end{aligned}$ ALLOW hectare ${ }^{-1}$ for h^{-1} ALLOW y for yr DO NOT ALLOW 'per' ALLOW ' $/$ ' instead of ${ }^{-1}$ Examiner's Comments This was a high level question, and as expected, only the most able candidates answered this question correctly. Very few understood the idea of mass/energy +area/volume + time, make up the unit.
		Total	7	
		A	1	Examiner's Comments Candidates needed to be clear about the definitions of species richness and species evenness in order to answer this question. Option D was a common incorrect suggestion. Some candidates suggested G or H, which were not valid options.
		Total	1	
3 6	i	loss of, (rainforest) habitat / food source or deforestation \checkmark hunting / poaching (for horn) \checkmark	max 2	IGNORE disease ACCEPT loss of (rainforest) ecosystem IGNORE only lives in rainforest Examiner's Comments 'Poaching' or 'hunting' and

	climate change \checkmark		'deforestation' were the most common correct reasons given for why the species is critically endangered.
	1 hard to find a mate / may be gender imbalance \checkmark 2 (inbreeding leading to) low genetic diversity / small gene pool / genetic bottleneck \checkmark 3 cannot / less likely to, cope with / adapt to, (named) environmental change \checkmark 4 all wiped out by the same disease \checkmark 5 more vulnerable to, predators / poachers \checkmark 6 natural disaster could wipe out, one / some, of the small populations \checkmark	max 2	1 ACCEPT few individuals of reproductive maturity 2 ACCEPT description 3 ACCEPT (population) unable to cope with new selection pressures 4 DO NOT CREDIT that they are more susceptible to disease in general Examiner's Comments Many candidates stated that less reproduction would occur but did not further develop the idea. A smaller gene pool or less genetic variation was often correctly stated but fewer candidates went on to explain how this would speed up extinction in terms of a lack of ability to adapt to environmental change or all being vulnerable to a particular disease. There was a misconception for some candidates in this question, since they discussed problems for small animals as opposed to small populations.
	education / awareness \checkmark support for / promote, conservation projects / research \checkmark	max 1	IGNORE ref to cloning In the context of educating the general public e.g. information displayed in the zoo or on website / holding education days for schools 'support' could mean: raise money / provide funds / provide technical support / provide expertise / etc. CREDIT in the context of an example e.g. sending people to monitor

			1 (1-2 marks) ited number of explanations are provided. The anations do not clearly show how the decrease diversity is caused. is some structure to the answer. The nations though basic are linked to the cable factor. rks sponse or no response worthy of credit.		- Subject to disease - Inability to adapt to changing conditions - Altering habitats - Specific example provided such as draining of wetlands reduces habitat diversity - Pesticide use - Use of fertiliser - Nitrate pollution - Eutrophication Climate change: - Warmer / drier climate - Modern strains/species not adapted - Migration may not be possible - Rise in sea level reduces land area - More frequent flooding affects terrestrial ecosystems
		Tot		6	
	i	sup 1 1 2	orts because... Adélie / ice-reliant / AW , penguin (population) decreased OR gentoo / chinstrap / non-ice-reliant , penguin (population) increased \checkmark figs that support either point given above \checkmark does not support because... idea that changes could be explained by (chance) arrival of , gentoo / chinstrap (and subsequent competition) \checkmark change in another described factor could explain changes (in a single species) \checkmark correlation does not mean causation \checkmark	$\begin{gathered} 3 \max \\ (\mathrm{AOB.1)} \\ (\mathrm{AO} 3.2) \end{gathered}$	Marks must reference support / AW 2 Must quote 2 numbers and 2 years or a calculated, increase / reduction 2 IGNORE units 4 ALLOW only disease present in Adélie only or change in food availability that favours, gentoo / chinstrap or new predator that preys more on

$\left.$| | | | |
| :--- | :--- | :--- | :--- | | This AO3 question was generally low |
| :--- |
| scoring. Most candidates stated the |
| type of evidence that might be |
| available but, as the question asked |
| for evidence that would support such |
| a claim, plausible answers had to be |
| in the context of a change from |
| previous levels. Hence, 'extent of |
| sea ice' did not get a mark but |
| reduced sea ice' did. Many |
| candidates repeated information |
| given in the stem about water |
| temperature or water animals, not |
| recognising the significance of |
| further' in the question. | \right\rvert\,

			website of Scottish Natural Heritage: https:/www.nature.scot/plants-animals-and-fungi/mammals/landmammals/wildcats Further detailed information is available at: https:/www.nature.scot/snh- commissioned-report-360-scottish-wildcat-survey-2006-2008 which gives this information about historic wildcat decline: "By the end of the 19th century the wildcat was becoming scarce in Scotland (Langley \& Yalden, 1977). Accounts by St John (1893) and Mackenzie (1921) highlighted the rise of game-keeping in Scotland and attitudes toward vermin indicated a wish to exterminate both wildcats and foxes. NethersoleThomson (1951) gives figures for the killing which took place in Glen Garry, where 198 wildcats were killed in three years, and in Glen Quoich where 207 wildcats were killed over 19 years. These may have been an exaggeration to impress estate owners but there was a substantial decline in numbers. Although general information prior to 1900 is sparse, Langley \& Yalden (1977) inferred killing was the primary cause of their dramatic decline from 1800 onwards and the decline in carnivores during this period matches well with the increase in game-keeping."
	Please refer to the marking instructions on this mark scheme for guidance on how to mark this question. In summary: Read through the whole answer. (Be prepared to recognise and credit unexpected approaches where they show relevance.) Using a 'best-fit' approach based on the science content of the answer, first decide which of the level descriptors, Level 1, Level 2 or Level 3, best	6	Indicative scientific points may include genetic biodiversity: - genetic, diversity / variation, low / will decrease - small gene pool / few alleles (at each locus)

describes the overall quality of the answer Then, award the higher or lower mark within the level, according to the Communication Statement (shown in italics):

- award the higher mark where the Communication Statement has been met.
- award the lower mark where aspects of the Communication Statement have been missed.
- The science content determines the level.
- The Communication Statement determines the mark within a level.

Level 3 (5-6 marks)

A detailed description and explanation of the potential effects of small population size on genetic and species biodiversity.
There is a well-developed line of reasoning which is clear and logically structured. All the information presented is relevant and substantiated.

Level 2 (3-4 marks)

A basic description and explanation of potential effects of small population size on genetic and species biodiversity.
OR
A detailed description and explanation of the potential effects of small population size on genetic or species biodiversity.
There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.

Level 1 (1-2 marks)

A description of some potential effects for genetic and species biodiversity of small population size. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.

0 marks

No response or no response worthy of credit.

- proportion of polymorphic loci is small
- homozygosity increases / heterozygosity decreases
- inbreeding (depression will occur)
- (as closely-) related cats, mate / breed
- loss of alleles / genetic erosion
- by chance / genetic drift
- correct ref. to disease susceptibility
- low potential for adaptation (to future change)
- new alleles may arise (slowly)
- by mutation
- (slow as) one / few, generation(s) per year

species biodiversity

- wildcats may go extinct (in Scotland)
- one less species
- correct ref. to species richness
- correct ref. to species evenness
- former prey species may, return / increase / extend range (increasing biodiversity)
- affect food chain / example of food chain effect
- conservation, efforts / effects
- only one cat species (in Scotland)

Examiner's Comments

Most answers explained that small population size would reduce genetic biodiversity and many stated that a small gene pool decreased the likelihood of successful adaptation to change in environment. Few

			answers showed an evaluative tendency by considering that new alleles might arise due to mutation. Candidates often referred to species biodiversity and also species richness and species evenness but not all could use these terms in a way that showed they understood their meaning. Higher ability candidates related the possible extinction of the wildcat species to a decrease in species richness or diversity, and considered the knockon ecological effects of a decline in wildcats, suggesting an increase in prey population size or prey diversity and sometimes a corresponding decline in producer numbers or diversity. A key feature of a high-scoring answer was following the question instruction fully to make valid points about both genetic biodiversity and species biodiversity. Exemplar 1 ana prey av on many ol khrinhahibatr thes luve in the mosevemaise un unhabitsa tohave the scumegenen and thw be fuccospt prexis bocidix.ercuts Exemplar 1 uses subject-specific vocabulary correctly and shows an evaluative approach by considering the ecological role of the wildcat population within its community and habitat (L3 with communication statement met, 6/6).

				Exemplar 2 When talkung about spenases biodur the saientise is right because the nurber of wincats decreases. does the peecies biodinesity , Here ore less of that species. And when talking ubaut genetic biad thus only deceneases when the becones extrict, as ever ig. is one wildcat bogt, thote gen still axist But when they exterict, the gene no longer and the genetce biodwisnty. dexreases Exemplar 2 misuses the term species biodiversity apparently to mean population size, or possibly species evenness, and wrongly implies that the members of the wildcat population are all 100% homozygous. Their only correct point is raising the possibility that the wildcat may become extinct (L1 with communication statement not met, 1/6).
		Total	7	
4 2		1 ecotourism \checkmark 2 idea that money from tourists is used to support conservation \checkmark 3 example of conservation project (facilitated $3 \quad$ by tourism revenue) \checkmark	$\begin{gathered} 2 \max \\ \text { (AO } \\ 2.1) \end{gathered}$	$\mathbf{3}$ CREDIT only if $\mathbf{2}$ has been awarded e.g. planting trees wildlife rangers maintain footpath rewilding removal of non-native species creating nature reserves reintroduction programmes Examiner's Comments Many candidates achieved at least 1 mark here. Many candidates

			seemed to have forgotten the term 'ecotourism', but some appreciated that the money spent by tourists could be used on conservation. Others then went on to give a specific example of a project that could increase biodiversity. A minority of candidates argued that the increased urban development associated with tourism would lead to an increase in biodiversity because urban areas are more diverse than monoculture. Such responses were not given any credit. Misconception The most common misconception here was that candidates thought that the seeds/spores/bacteria, and even pets, brought by tourists would boost the biodiversity, or that their behaviour (e.g. trampling or dropping food) would change the ecosystem to benefit more organisms.
	Total	0	
$\begin{aligned} & 4 \\ & 3 \end{aligned}$	FIRST CHECK ON ANSWER LINE If answer = $\mathbf{7 6 7}$ or $\mathbf{7 6 8}$ award $\mathbf{2}$ marks $545 \times 100 / 71 \checkmark$	$\begin{gathered} 2 \\ \max (A \\ \mathrm{O} 2.2) \end{gathered}$	If answer incorrect ALLOW max 1 mark for 76.6 ALLOW max 1 mark for 1535 (quoting individuals rather than pairs) Examiner's Comments Most candidates did this calculation successfully. Others multiplied 545 by 0.71 and so gave an answer lower than 545, which does not make sense in the context of the question. Exam tip Estimate the size of an expected answer and then use this estimate to accept the calculated answer, or to reject it and try again.

	i	deliberate killing to maintain grouse numbers / pollution / pesticides / disease / loss of another food source / competition from new predator \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.5) \end{gathered}$	Mark as prose IGNORE habitat loss ALLOW hunting
		Total	3	
4	i	seed dispersal	1	
	i	(named) economic reason (named) aesthetic reason	2	
		Total	3	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$		argument for important, (N or C) recyclers / saprotrophs (1) argument against not a predator (1) large in abundance / biomass (so effect on environment not disproportionate) (1)	2	
		Total	2	
$\begin{aligned} & 4 \\ & 6 \end{aligned}$	i	cell wall \checkmark (named) metabolic reaction \checkmark reproduction of bacterium \checkmark	1 max	e.g. protein synthesis
	i	many drugs, found in / originated from, plants / microbes \checkmark (so, maintaining biodiversity) increase the chance of, finding / developing, new drugs \checkmark maintains a genetic resource (for future) \checkmark idea that: once a species is extinct it's gone forever \checkmark	2 max	ALLOW forest
		Total	3	
$\begin{aligned} & 4 \\ & 7 \end{aligned}$	i	D \checkmark	1(AO2. 1)	Mark the first answer. If any additional answer is given then $=0$ marks Examiner's Comments Candidates who understood ex-situ scored with D. Confusion with in-situ led to the wrong answer A.

				about preservation on the part of some candidates.
		Total	2	
4	i	Measures fishing quotas (1) mesh size (1) species restriction (1) trawler size / days at sea (1) penalties / sanctions (1) monitoring / surveillance (1) publicity / public education (1) Difficulties area too large (1) expense of monitoring (1) monitoring hampered by, weather / seasons (1) false reporting of, catches / trawler size / mesh size / days (1) death of fish caught but not kept (because of restrictions) (1)	4	The difficulties should relate to the measures proposed.
		argument for comparison of the energy in large fish and krill shows humans would get 100x more kJ / energy from krill than large fish (1) argument against would require large change to fishing industry / consumer habits or could impact ecosystem at first trophic level (1)	2	ALLOW the use of figures to illustrate the data comparison.
		Total	6	
5	i	(species are conserved) in their (natural) habitat \checkmark	$\begin{gathered} \text { 1(AO2. } \\ 1) \end{gathered}$	
		controlled grazing \checkmark monitoring of population(s) \checkmark restricting human access \checkmark remove / AW , invasive species \checkmark	$\begin{gathered} 1 \\ \max (\mathrm{~A} \\ \mathrm{O} 2.1) \end{gathered}$	ALLOW cutting heather ALLOW prevention of grazing IGNORE fence off the area ALLOW maintaining footpaths IGNORE 'don't allow building' ALLOW remove weeds
		Total	2	
5 1	i	advantage: exhibit natural behaviour / less likely to catch	2	Must give one advantage and one disadvantage.

		disease from humans (1) disadvantage: poaching more likely / could be wiped out by disease / more difficult to count (1)		
	$\begin{aligned} & i \\ & i \\ & i \end{aligned}$	3.1 (\%) (1)(1)	2	ALLOW one mark if calculation correct but final figure incorrect e.g. $(480-254) / 254 \times 100 / 29=$ ALLOW 3\% or 3.07\%
	i	three from no evidence of causal effect (1) the data may be inaccurate as a result of, indirect methods used / unhabituated animals hard to find (1) annual growth rate higher after 1993 (1) 3.2% (per year) before 1993 against 3.8\% after 1993 (1) figures may not be accurate due to collection technique (1)	3	
		Total	7	
		General statement identifying place and y axis variable plus two of options below: in Eastern Africa, poaching / number of illegally killed elephants / percentage of elephants killed illegally, is comment or comparison about absolute number 1 (kept) below 60 / lowest / lower (than C/W. Africa) \checkmark identify most recent sustained trend as far as 2015 2 decreasing / less, since 2011 / from 60 to $40 \checkmark$ figures quote to show trend 3 quote any two figures and years and ref. decrease $\sqrt{ }$	2 max	Mark evidence 1 and 2 together as prose ALLOW AW for 'decrease' e.g.reduce / decline / drop / fall ALLOW AW for 'increase' e.g. goes up / rise / climb ALLOW ORA, e.g: in, Central / Western, Africa, poaching / number of illegally killed elephants / percentage of elephants killed illegally, is 1 (mostly) over 60 (or quote of figure over 60) / higher (than E. Africa) 2 increasing / more, since 2013 / from, 60 to 82 (W) / 70 to 75 (C) 3 quote any two figures and years and ref. increase

			IGNORE calculated 'by x \%' figures Examiner's Comments
i			Candidates generally picked out at least one piece of evidence but
needed to include detailed			
description, i.e. the number of			
illegally killed elephants in a named			
i race. Single figure comparisons			
(in 2113) \checkmark			

			$\begin{aligned} & \text { 2113: } 500000 \times 0.05=25000 \text { left } \\ & 2213: \\ & 25000 \times 0.05=1250 \text { left } \end{aligned}$ 1.25×10^{3} compared to 1×10^{7} is 4 orders of magnitude smaller. Examiner's Comments Candidates found this question very challenging and only very high ability candidates achieved a final answer of 4 orders of magnitude. See the AfL box for a step-by-step approach to solving this problem, and the OCR support box for links to useful resources. AfL Since the initial number of elephants was very large and the challenge was to find the difference in order of magnitude between a starting and final figure, it may be helpful to restate the figures in standard form as follows: 1. In 1913 there were $1^{\prime} 10^{7}$ elephants. 2. In 2013 there were $5^{\prime} 10^{5}$ elephants. 3. The percentage remaining after 100 years is calculated as the final number divided by the starting number multiplied by 100 (= 5\%) OR The percentage decrease after 100 years is calculated as the difference divided by the starting number multiplied by 100 (= 95\%). 4. Assuming the same rate of decline every 100 years, in 2113

